Strumenti di misura di lunghezza

L'unità di misura lineare è il metro, che corrisponde alla distanza tra due punti incisi su una barra in lega di platino e iridio, alla temperatura di 0 °C, conservata a Sèvres (Parigi) a cura dell'Ufficio Internazionale di Pesi e Misure. Del metro conservato a Sèvres esistono nel mondo copie, una anche a Firenze, in lega Invar (una lega metallica composta da ferro e nichel, con minima presenza di carbonio e cromo) avente piccolissimo coefficiente di dilatazione termica, che servono alla comparazione di tutti gli strumenti misuratori di lunghezza esistenti.

Prima di adentrarci nello studio dettagliato dei metodi e degli strumenti di misura di lunghezza è necessario definire cosa si intende per distanza, ricordando che la lunghezza è la distanza tra due punti.

Per distanza obiettiva tra due punti A e B si intende la misura del segmento AB che li congiunge. Se stiamo misurando l'altezza di un muro verticale, effettivamente si utilizza la distanza obiettiva.

Se invece misuriamo la distanza tra due abitazioni, detta distanza topografica, allora viene considerata la proiezione orizzontale della distanza obiettiva, integrando tale misura con il dislivello: il teorema di Pitagora può darci, se richiesta, la distanza obiettiva [fig. B1.8]. (Per misurare tale distanza dunque si fa ricorso alla Topografia, la scienza che studia procedimenti e sistemi necessari per la rappresentazione planimetrica e altimetrica di una zona di terreno.)

In effetti la proiezione orizzontale, in tal caso, non è un segmento ma un arco di cerchio [fig. B1.9] avente come “raggio locale” quello della Terra (si parla di “raggio locale” in quanto la Terra non è una sfera perfetta).

Nel campo topografico, cioè qualche centinaio di metri, non c'è alcuna differenza tra distanza curva e distanza piana, in quanto l'errore che si commette è assolutamente trascurabile. Considerando che il raggio della Terra supera i 6500 km, una distanza piana di 100 m corrisponde a una distanza curva di 100,00005 m con un errore di 5 centesimi di millimetro.

Le misure di lunghezza, come già evidenziato per le misure in generale, si definiscono dirette se permettono di valutare immediatamente il valore cercato, indirette se consentono la lettura di un valore diverso che però, dopo opportune operazioni, permette comunque di arrivare al valore cercato.

Le misurazioni della lunghezza, nelle costruzioni edilizie, possono avvenire in quattro situazioni o luoghi diversi e necessitano, a seconda della situazione e del luogo, di strumenti di misura diversi [fig. B1.10].

Rilievi tra edifici esistenti o distanze, in generale, tra punti molto lontani – Misura indiretta

Il teodolite

La misurazione della distanza, o rilievo, tra edifici esistenti o comunque punti distanti abbastanza (fino a circa 400 m) da non poter ricorrere a misurazioni dirette, si esegue per mezzo del teodolite.

Il teodolite [fig. B1.11] è uno strumento ottico con cannocchiale e reticolo (sottile linee incise sul vetro del cannocchiale) che permette di leggere valori intercettati dal reticolo e di misurare gli angoli di inclinazione del cannocchiale. Il teodolite è costituito essenzialmente da una base, da un'alidada (elemento a forma di “U” fissato alla base in modo da poter ruotare attorno all'asse verticale e che supporta un cannocchiale che ruota attorno a un asse orizzontale) e da due cerchi, orizzontale e verticale, graduati.

La base, appoggiata su un treppiede [fig. B1.12], è dotata di viti regolabili che permettono di ottenere la verticalità dell'asse primario dello strumento grazie all'aiuto di una livella sferica e di una livella torica.

![Distanza obiettiva e distanza topografica.

![Distanza topografica reale e distanza topografica misurata.](image)
Misurazioni di lunghezze in edilizia.

Rilievi tra edifici esistenti o distanze, in generale, tra punti molto lontani

Rilievi all'interno di edifici

Misurazioni in cantiere

Misurazioni a livello grafico in fase di progettazione

Teodolite
Tacheometro
Stazione totale
Google Earth

Metro
Fettuccia metrica
Laser

Metro
Fettuccia metrica
Laser
Teodolite
Tacheometro
Stazione totale

Riga
Squadra
Programmi di computer (AutoCAD)

3.1.10 Misurazioni di lunghezze in edilizia.

3.1.1 Teodolite.

3.1.2 Treppiede.
La livella sferica [fig. B1.13] è costituita da un bulbo di vetro, fissato in un telaio metallico, chiuso ermeticamente e riempito di un liquido incondensabile alle temperature terrestri, come per esempio l'etere o l'alcool; il bulbo non è riempito completamente in modo che al suo interno rimanga una bolla d'aria che si dispone sempre nella parte più alta del bulbo stesso. Sul vetro è inciso un cerchietto di piccole dimensioni: se la bolla si dispone centrata rispetto al cerchietto allora si ha la certezza che l'asse polare della livella è verticale.

Nella livella torica [fig. B1.15] la bolla deve posizionarsi tra due segmenti posti a piccola distanza; la livella torica permette di controllare l'orizzontalità o la verticalità in una sola direzione, ma è più precisa della livella sferica. Una volta posizionato correttamente il teodolite, eseguita cioè la cosiddetta ‘messa in bolla’, e collimato il punto desiderato, è possibile leggere gli angoli di inclinazione del cannocchiale sui cerchi graduati e anche le misure intercettate su una stadia posta in verticale sulla proiezione a terra del punto collimato.

Per centrare lo strumento sopra un punto P a terra si utilizzano un filo a piombo e una livella sferica che permettono, nel contempo, di ottenere anche una verticalità approssimata dell'asse primario [fig. B1.14] dello strumento. L'approssimazione dipende dalla precisione, non ottimale, della livella sferica. Si utilizza allora, in una seconda fase, una livella torica per ottenere la perfetta verticalità dell'asse primario.

La stadia [fig. B1.16] è un'asta graduata di legno o metallo lunga da 2 a 4 metri che viene posizionata verticalmente sul terreno grazie all'utilizzo di un filo a piombo.

Il tacheometro

Il tacheometro si differenzia dal teodolite essenzialmente per la minor precisione della misurazione; per contro, lo strumento presenta una maggiore semplicità di utilizzo. Di solito è più conveniente ricorrere a un teodolite per la misurazione degli angoli e a un tacheometro per la misurazione delle distanze.
La stazione totale

Attualmente teodoliti e tacheometri sono quasi completamente sostituiti dalla cosiddetta stazione totale che permette, con metodo elettronico, di misurare con ottima precisione sia gli angoli sia le distanze. La stazione totale [fig. B1.17] è quasi sempre dotata anche di un computer che memorizza i dati letti, rielaborandoli a seconda delle necessità.

![Stazione totale](image)

B1.18 Misurazione di una distanza su una superficie orizzontale.

D = K \cdot S

dove K è un numero fisso, tipico del teodolite utilizzato e che dipende dall’angolo ω di visuale del teodolite stesso, mentre S è il segmento di lettura sulla stadia $S = l_s - l_l$ [fig. B1.19]. Essendo l’angolo ω costante, il segmento S risultà tanto più piccolo quanto maggiore sarà la distanza da misurare. D ed S sono allora direttamente proporzionali e, una volta eseguita la lettura di S, è immediato il calcolo di D.

Per facilitare il calcolo, il teodolite è realizzato in modo che la costante K risulti quasi sempre uguale a 100 (il che corrisponde a un angolo di apertura di 0,6366°). Usualmente in Topografia l’angolo è espresso in gradi centesimali: angolo retto pari a 100°, cioè a 100 gradi centesimali. Esistono anche teodoliti con $K = 50$ e angolo di apertura pari a 18,2732°.

La lettura sulla stadia va fatta intercettando il filo superiore l_s, il filo intermedio l_m e il filo inferiore l_l. Un controllo immediato da fare è se la distanza $S = l_s - l_l$ tra il filo superiore e inferiore è il doppio tra quella tra il filo superiore
o inferiore e quella intermedia ($l_s - l_m$ oppure $l_m - l_i$). Se ciò non avviene, significa che si è commesso un errore di lettura e quindi la lettura va eseguita di nuovo.

La lettura l_m è perfettamente il valore medio tra l_s ed l_i soltanto quando il cannocchiale è orizzontale, ma per inclinazioni fino a 25° l’errore che si commette è trascurabile. Esistono anche teodoliti con angolo ω variabile e lettura S sulla stadia costante, ma questi argomenti saranno materia, nel triennio, del corso di Topografia.

Misurazione della distanza tra due punti posti a quote altimetriche diverse

Se sulla stadia non si legge una misura (sul filo intermedio) corrispondente all’altezza h dello strumento o se addirittura è necessario inclinare verticalmente lo strumento per riuscire a intercettare la stadia stessa, allora significa che i due punti dei quali bisogna misurare la distanza (topografica) non sono posti alla stessa quota altimetrica [fig. B1.20]. È questo il caso più frequente nella pratica.

Il discorso si complica e per ottenere il valore di D bisogna ricorrere a una formula diversa:

$$D = K \cdot S \cdot \sin^2 \varphi$$

dove $\sin^2 \varphi$ è il quadrato di una funzione dell’angolo φ. $\sin \varphi$ si legge “seno di φ” ed è una funzione trigonometrica (la trigonometria è la scienza che studia le misure dei triangoli, dei loro angoli e dei loro lati e che verrà affrontata nel triennio).

Per le nostre finalità è sufficiente fare riferimento alla figura B1.20 bis, dove vengono evidenziate, per i triangoli rettangoli, le formule per ottenere le lunghezze di
due lati incogniti, una volta note la misura di un angolo α e la lunghezza del terzo lato utilizzando, oltre alla funzione sin, anche le funzioni cos (coseno) e tg (tangente).

Senza quindi addentrarci in discorsi troppo complicati, è sufficiente sapere che con le usuali “macchinette calcolatrici scientifiche” [fig. B1.21], che uno studente deve avere nel proprio bagaglio di strumenti scolastici, è possibile facilmente calcolare il valore di $\sin \varphi$ e quindi di $\sin^2 \varphi$.

Per calcolare $\sin^2 \varphi$ occorre prima impostare la calcolatrice digitando il tasto MODE finché non compaiono sul display le tre scritte DEG, RAD e GRA (per angoli rispettivamente sessadecimali, radianti e centesimali) riferite ai numeri 1, 2 e 3: digitare il numero 3 per scegliere i gradi centesimali; digitare il tasto “sin” e di seguito il valore dell’angolo φ con 4 cifre significative dopo la virgola, necessarie per ottenere una precisione accettabile; digitare “=” e da ultimo il tasto “x^2”: sul display compare il valore numerico di $\sin^2 \varphi$.

Ovviamente, la sequenza appena indicata, valida per la maggior parte delle “macchinette calcolatrici”, può non essere perfettamente uguale a seconda delle ditte produttrici, per cui si faccia sempre riferimento al manuale d’uso.

Misurazione di un dislivello

In caso di misurazione della distanza topografica tra due punti posti a quote differenti, è richiesta di solito anche la misurazione del dislivello [fig. B1.22].

Con distanza topografica e dislivello è possibile, ricordiamo, ottenere la distanza obiettiva attraverso il teorema di Pitagora [fig. B1.23].
Posto $\Delta_{AB} = Quota\ altimetrica\ di\ B - Quota\ altimetrica\ di\ A$, la misurazione del dislivello si ottiene con la formula:

$$
\Delta_{AB} = D \cdot \tan(100\theta - \varphi) + h_A - h_B
$$

dove \tan (tangente), come già accennato, è un'altra funzione trigonometrica, al solito ricavabile con le "macchinette calcolatrici" con la sequenza MODE, GRAD, TAN e il valore dell'angolo $(100\theta - \varphi)$.

Google Earth

Le distanze topografiche tra punti molto lontani possono essere misurate, grazie alla avanzatissima tecnologia moderna, ricorrendo al computer e al noto programma Google Earth.

La procedura da seguire è la seguente:

- individuare sull'immagine di Google Earth [fig. B1.24] i due punti tra i quali si vuole misurare la distanza topografica (per esempio, Piazza San Pietro e il Colosseo a Roma);
- accertarsi che la vista sia perpendicolare al suolo [fig. B1.25]: per far questo è sufficiente digitare il tasto "U";
- disattivare il livello "Terreno 3D" [figg. B1.26-B1.27] per ottenere una maggior precisione, visto che la distanza topografica non deve tener conto di eventuali rilievi;
- dal menu Strumenti selezionare Righello: confrontare la finestra Righello, che è opportuno spostare in modo che non interferisca con la zona di misurazione;
- scegliere lo strumento Linea;
- scegliere l'unità di misura della lunghezza [fig. B1.28];
- fare "clic" sul punto di partenza: compare un puntino rosso.
[fig. B1.29] che indica l’inizio della linea gialla da tracciare;
- trascinare il mouse fino al punto di arrivo dove occorre di nuovo fare “clic”: compare un puntino verde [fig. B1.30] che indica la fine della linea gialla da tracciare [fig. B1.31];
- nella finestra Righello viene visualizzata la misura della distanza [fig. B1.32].

Rilievi all’interno di edifici
- Misura diretta e misura indiretta

Per eseguire misurazioni di lunghezza all’interno di edifici, necessarie per disegnare la pianta di una costruzione da ristrutturare oppure per valutare i m² e quindi il valore di un edificio da vendere, si possono utilizzare o la fettuccia metrica o il più moderno laser.
La fettuccia metrica [fig. B1.33], realizzata in tela plastificata o in fibra di vetro, è un nastro flessibile graduato che consente la misurazione diretta delle distanze.